![]() 垂直氮化鎵肖特基二極體
专利摘要:
本發明係揭露利用絕緣基板,製備一種垂直傳導的氮化物肖特基二極體,當肖特基二極體元件封裝在晶圓級成型化合物的正面後,剝去絕緣基板。晶圓級成型化合物對二極體元件的正面提供結構支撐,使絕緣基板可以剝去,從而在二極體元件的背面形成一個導電層,作為陰極電極,實現了垂直傳導的氮化物肖特基二極體。在另一個實施例中,垂直氮化鎵肖特基二極體的保護電路採用矽垂直PN接面二極體與氮化鎵肖特基二極體並聯,以分流反向偏置雪崩電流。 公开号:TW201320355A 申请号:TW101141768 申请日:2012-11-09 公开日:2013-05-16 发明作者:Ting-Gang Zhu;Anup Bhalla;Ping Huang;Yueh-Se Ho 申请人:Alpha & Omega Semiconductor; IPC主号:H01L29-00
专利说明:
垂直氮化鎵肖特基二極體 本發明是關於一種氮化鎵半導體元件,尤其是關於垂直氮化鎵肖特基二極體,形成在絕緣基板上,隨後剝離。 肖特基二極體是利用金屬接觸半導體層製成的一種半導體元件。金屬和半導體層之間的接面為整流接面,其特徵是藉由自由載流子低於PN接面的能量勢壘,以及與PN接面中的雙極電流傳導相反的單極電流傳導。就這點來說,肖特基二極體開始電流傳導的正向偏壓小於普通的PN接面二極體,但反向偏壓洩漏電流大於普通的PN接面二極體。由於肖特基二極體為雙極元件,它們的開關速度通常大於PN接面二極體。肖特基二極體對於開關損耗是主要的能耗來源的元件(例如開關模式電源(Switch Mode Power Supply , SMPS)來說,是非常理想的選擇。 已知許多氮化物化合物半導體材料製成的電子元件。這種電子元件也稱為Ⅲ-氮半導體元件,正如基於Ⅲ族氮材料製成的半導體元件。氮化物化合物半導體元件較寬的帶隙以及較高的擊穿電壓等優良特性,使得它們非常適用於高壓和高溫元件。尤其是提出了一種具有高擊穿電壓和低導通電阻的Ⅲ-V氮化鎵化合物半導體肖特基二極體。藉由使用Ⅲ-氮半導體肖特基勢壘二極體,可以提高開關模式電源的效率。 然而,氮化物半導體肖特基二極體與以矽基板的肖特基二極體相比,具有明顯的不足。以矽基板的肖特基二極體採用垂直傳導路徑,而氮化物肖特基二極體經常依賴水平傳導路徑。這是因為,氮化物半導體元件通常形成在絕緣基板或絕緣緩衝層上方,絕緣緩衝層外延生長在導電或非導電基板上。因此,肖特基二極體的陽極和陰極都形成在元件的頂面上,與基板相對,形成水平傳導元件。當元件正向偏置時,由於正向電流必須流經一段相當長的傳導路徑,並且產生非均勻的電流分佈,因此帶有水平傳導路徑的肖特基二極體具有較高的接通電阻。 更確切地說,氮化物半導體元件通常作為生長在基板材料上的外延層,基板材料包括矽、藍寶石、碳化矽以及降壓氮化鎵基板。雖然在大塊氮化鎵結晶基板上生長氮化鎵層的效果最好,但是降壓氮化鎵基板所用的材料非常昂貴,大多數的電子元件使用大塊氮化鎵基板並不現實。碳化矽基板也是如此。同時,儘管矽基板是成本最低的材料,但是由於氮化鎵外延層和矽基板之間的晶格失配很顯著,因此在矽基板上生長一個氮化鎵層的所產生的效果很差。 藍寶石基板對於氮化物半導體元件來說,是很好的選擇,其成本較低,大量使用於LED製備和充分的晶格匹配,形成高質量的外延層。因此,建立在絕緣藍寶石基板上的氮化鎵半導體元件為水平傳導元件或准垂直傳導元件。在絕緣藍寶石基板上製備垂直傳導的氮化鎵元件存在許多困難與挑戰。 此外,可靠的氮化鎵半導體元件需要有效的端接結構,降低陽極電極邊緣處的電場擁擠效應,尤其是高壓元件。傳統的端接結構包括p-型保護環,在氮化鎵肖特基二極體的陽極端有場板結構。然而,由於氮化物半導體元件本身具有很寬的帶隙,利用傳統的植入和退火製程,難以形成退火的或活化的p-型區。因此,用於氮化物半導體元件的傳統的保護環結構,並不能被活化。 美國專利號7,229,866提出了一種在傳導和非傳導基板上製備氮化鎵肖特基二極體,還提出了使用未活化的保護環。製備未活化的保護環是藉由離子植入到半導體接觸層中,在半導體接觸層中植入區並沒有完全退火,植入的粒子未被活化。植入區構成一個高阻抗區,嵌入的缺陷密度使運行時的可靠性變差。 依據本發明的一個實施例,垂直傳導的氮化物肖特基二極體包括一個第一導電類型的氮化物半導體基板;一個形成在氮化物半導體基板正面的第一金屬層,構成一個肖特基接面,第一金屬層構成肖特基二極體的陽極電極;一個形成在第一屬層上的第二金屬層;一個形成在氮化物半導體基板背面的第三金屬層,第三金屬層同半導體基板構成歐姆接觸,形成肖特基二極體的陰極電極;一個形成在第二金屬層上的焊錫球;以及一個形成在氮化物半導體基板正面的晶圓級成型層,晶圓級成型層封裝第二金屬層和至少一部分焊錫球。肖特基二極體具有一個來自焊錫球的垂直電流通路,穿過陽極電極和肖特基接面,一直到陰極電極。 在另一個實施例中,一種用於垂直傳導的氮化物肖特基二極體的製備方法包括製備絕緣基板;在絕緣基板上製備第一導電類型的氮化物半導體基板;在氮化物半導體基板正面製備一個第一金屬層,構成一個肖特基接面,第一金屬層構成肖特基二極體的陽極電極;在第一金屬層上製備一個第二金屬層;在第二金屬層上製備一個焊錫球;在氮化物半導體基板正面製備一個晶圓級成型層,晶圓級成型層封裝第二金屬層和至少一部分焊錫球;將絕緣基板與半導體基板分開,使氮化物半導體基板背面裸露出來;並且在以氮基礎的半導體基板裸露的表面製備一個第三金屬層,第三金屬層同半導體基板構成歐姆接觸,形成肖特基二極體的陰極電極。肖特基二極體具有一個來自焊錫球的垂直電流通路,穿過陽極電極和肖特基接面,一直到陰極電極。 閱讀以下詳細說明並參照附圖之後,將更好地理解本發明。 依據本發明的原理,利用絕緣基板製備垂直傳導的氮化物化合物半導體肖特基二極體(「垂直氮化物肖特基二極體」),在帶有甲氧基成型混料的正面,封裝二極體元件之後,升高絕緣基板。晶圓級成型混料在二極體元件的正面提供結構支撐,使絕緣基板升高,從而在二極體元件的表面形成一個導電層,作為陰極電極。這樣就實現了垂直傳導的氮化物肖特基二極體。 依據本發明的另一方面,氮化物肖特基二極體的端接結構包括一個保護環,它的製備是藉由外延生長P-型氮化物化合物半導體層以及形成在保護環上的電介質場板。端接結構形成在肖特基二極體的陽極電極邊緣處,具有較低陽極邊緣處電場擁擠的效果,尤其是當肖特基二極體反向偏置時。在一個實施例中,P-型外延層包括一個凹陷製程,從而進一步提高端接結構的場擴散效應。 最終,依據本發明的另一方面,垂直氮化鎵肖特基二極體的保護電路採用一個以矽基板的垂直PN接面二極體並聯到氮化鎵肖特基二極體上,以轉移反向偏置雪崩電流。 在以下說明中,「氮化物化合物半導體」或「Ⅲ-氮化合物半導體」一詞是指形成在氮和元素週期表Ⅲ族元素(通常為鋁、鉀和銦)之間的那些Ⅲ-V化合物半導體材料。該詞也指三相和三元化合物,例如氮化鋁鎵和氮化鋁銦鎵。氮化物化合物半導體肖特基二極體比較適用的材料包括氮化鎵和鋁(Al)氮化鎵。在以下說明中,利用鉀-氮(GaN)化合物半導體製備的肖特基二極體有時也稱為「氮化鎵肖特基二極體」。然而,利用氮化鎵作為氮化物半導體材料僅用於解釋說明,可以利用已知或將要研發其他的Ⅲ-V化合物半導體材料,製備本發明所述的氮化物化合物半導體肖特基二極體。 垂直氮化鎵肖特基二極體第1圖表示依據本發明的一個實施例,一種垂直氮化鎵肖特基二極體之剖面圖。參見第1圖,利用氮化物化合物半導體基板14和與肖特基金屬層24,製備垂直氮化鎵肖特基二極體10。在本發明的實施例中,藉由一個或多個氮化鎵半導體層,製備氮化物化合物半導體基板14,一個或多個氮化鎵半導體層通常為N-型導電類型,但摻雜濃度不同。肖特基接面形成在肖特基金屬層24和N-型氮化鎵基板14的接面處。氮化鎵肖特基二極體10的陽極端形成在元件結構的正面,而陰極端形成在元件結構的背面,產生垂直電流,實現了垂直傳導的肖特基二極體元件。 更確切地說,藉由焊錫球35,製備氮化鎵肖特基二極體10的陽極電極,焊錫球35形成在元件結構正面的肖特基金屬層24上的結合金屬層30上。在陽極端的邊緣處,可以藉由鈍化層32,使肖特基金屬層24和結合金屬層30鈍化。藉由晶圓級成型混料36,封裝氮化鎵肖特基二極體10的正面,包括形成在上面的陽極電極,為氮化鎵肖特基二極體10提供結構支撐,從而除去絕緣基板,氮化鎵基板14最初就形成在絕緣基板上,這將在下文中詳細介紹。藉由形成在元件結構背面的陰極金屬層50,製備氮化鎵肖特基二極體10的陰極電極,陰極金屬層50與氮化鎵基板14電接觸。從陽極電極到陰極電極的二極體電流通路垂直穿過氮化鎵肖特基二極體10,從焊錫球35到陰極金屬層50。 在本說明中,一個或多個垂直氮化鎵肖特基二極體(元件1和元件2)形成在公共氮化鎵基板14上。二極體元件並聯,作為一個肖特基二極體陣列。更可選擇,在一個實施例中,單獨使用氮化鎵肖特基二極體,作為單獨的垂直傳導肖特基二極體。例如,第1圖中的肖特基二極體元件1和肖特基二極體元件2可以在它們之間的鈍化層32處分開。 參閱第2圖和第3(a)至3(m)圖,下文將詳細介紹第1圖所示的垂直氮化鎵肖特基二極體10的製備製程。第2圖表示依據本發明的實施例,第1圖所示的垂直氮化鎵肖特基二極體製備製程之流程圖。第3(a)至3(m)圖表示依據本發明的實施例,第2圖所示的垂直氮化鎵肖特基二極體製備製程的中間步驟之剖面圖。 參閱第2圖和第3(a)至3(m)圖,製備過程從製備絕緣基板12開始,並在絕緣基板12上製備氮化鎵半導體基板14(步驟102),如第3(a)圖所示。在本實施例中,絕緣基板102為藍寶石基板。此外,在本實施例中,氮化鎵半導體基板14包括一個重摻雜的N-型氮化鎵層16(「n++ 氮化鎵層16」)形成在藍寶石基板12上,以及一個輕摻雜的氮化鎵層18(「n- 氮化鎵層18」)形成在重摻雜的氮化鎵層16上。本發明所述的製備製程使用藍寶石基板製備氮化鎵肖特基二極體,利用的是藍寶石與氮化鎵層的晶格非常匹配,藍寶石的材料成本也比較合理,從而構成高質量的氮化鎵層。 藉由製備氮化鎵肖特基二極體的端接結構,進行製備製程(步驟104)。端接結構用於抑制陽極電極邊緣處形成的電場擁擠。傳統的端接結構包括P-型保護環結構或電介質場板結構,形成在陽極電極的周圍。端接結構的作用是重新分配陽極電極端接區的電場,從而增加肖特基二極體元件的擊穿電壓。在本實施例,端接結構所採用的是P-型保護環和電介質場板。使用P-型保護環和電介質場板作為端接結構僅用於解釋說明。已知或將要研發的其他端接結構,可以用於本發明所述的氮化鎵肖特基二極體。 為了製備P-型保護環,要在氮化鎵半導體基板14(第3(a)圖)上形成光致抗蝕劑圖案40。更確切地說,是在n-氮化鎵層18的頂面上形成光致抗蝕劑圖案40。然後,利用光致抗蝕劑圖案40作為遮罩,進行p-型摻雜物的離子注入製程。注入後,在n-氮化鎵層18的頂面上形成一個p-型區20,作為保護環,如第3(b)圖所示。在第3(b)圖中的剖面圖中,所表示的p-型保護環20形成在n-氮化鎵層18的兩邊。在實際元件中,p-型保護環20包圍著氮化鎵肖特基二極體的陽極電極,以抑制沿陽極電極整個邊緣的電場擁擠。在後續處理中,P-型保護環20可以被或不被活化或退火。 形成p-型保護環20之後,除去抗蝕劑圖案,在n-氮化鎵層18的表面上方沉積一個氧化矽層22(第3(b)圖)。形成氧化矽層22的圖案,限定陽極電極的開口,也製備電介質場板作為端接結構的一部分(第3(c)圖)。 然後,在n-氮化鎵層18的頂面上沉積一個肖特基金屬層24,並形成圖案,製備帶有輕摻雜氮化鎵層18的肖特基接面(步驟106),如第3(d)圖所示。用於製備肖特基接面的肖特基金屬層24可以從鎳(Ni)、鉑(Pt)、金(Au)、鈷(Co)、鈀(Pd)、鉻(Cr)、銠(Rh)、錸(Re)、矽化鉑(PtSi)、釩(V)、鎢(W)、矽化鎢(WSi)和矽化鎳(NiSi)中選取。肖特基金屬層24也可以是一種化合物或由本族金屬製成的合金,例如Ni/Au。然後,在肖特基金屬層24上方沉積一個第二氧化矽層26,並形成圖案,限定陽極電極的一個開口,也使肖特基金屬層的邊緣鈍化,如第3(e)圖所示。氧化矽層26還用於端接結構一個額外的場板層。 然後,在肖特基金屬層24的頂面上沉積一個結合金屬層30,並形成圖案,製備陽極電極的結合墊(步驟108),如第3(f)圖所示。在結合金屬上沉積一個鈍化層32(例如聚醯亞胺層),並形成圖案,限定結合墊的一個開口,而鈍化層32保護了氮化鎵肖特基二極體的邊緣區域,如第3(g)圖所示。 因此,氮化鎵肖特基二極體形成在絕緣藍寶石基板12上。在本發明的實施例中,重摻雜氮化鎵層16的厚度約為1-3μm,摻雜濃度約為1×1018-×1019cm-3,輕摻雜氮化鎵層18的厚度約為3-20μm,摻雜濃度約為1-2×1014-17cm-3。在本發明的實施例中,肖特基金屬層為Ni/Au層,結合金屬層30為鈦(Ti)/鋁(Al)層。 為了利用像第3(g)圖中的元件結構,製備垂直傳導的氮化鎵肖特基二極體,要除去絕緣藍寶石基板12,從而形成背面陰極電極。依據本發明的實施例,晶圓級封裝層形成在元件結構正面,封裝層作為支撐層,在除去絕緣藍寶石基板12之後,確保安全高效地處理元件結構。在晶圓封裝層中形成陽極電極的電連接,打通晶圓封裝層下方到肖特基二極體陽極的連通性。 因此,參閱第3(h)圖,在結合金屬墊30上形成一個焊錫球35(步驟110)。利用焊錫球35,形成到陽極電極的電連接。然後,如第3(i)圖所示,在元件結構的正面形成一個晶圓級封裝層36(步驟112)。在一個實施例中,晶圓級封裝層36為一個晶圓級成型層,可以利用整合電路的成型混料(例如環氧樹脂成型混料)製備。晶圓級型層36部分覆蓋焊錫球35。 然後,對第3(i)圖中元件結構的正面進行機械拋光,使焊錫球35突出到成型層36外面的部分平整化(步驟114)。從而如第3(j)圖所示,形成了氮化鎵肖特基二極體平整的正面。陽極電極穿過平整的焊錫球35。在本發明的實施例中,可以利用銅夾或其他連接技術,形成到氮化鎵肖特基二極體陽極的電連接。 肖特基元件結構的正面完成後,成型層36作為一個支撐層,使元件結構的絕緣藍寶石基板12從氮化鎵半導體基板上除去,從而裸露出氮化鎵半導體基板14的底面。實際上,在公共藍寶石基板上的氮化鎵肖特基二極體元件陣列上,使用的是晶圓級封裝層。因此,晶圓級成型層36作為晶圓傳送,以便使氮化鎵半導體基板薄膜從結合的基板上分離下來後,傳送氮化鎵半導體基板薄膜。 在本發明的實施例中,利用激光剝離製程,從氮化鎵半導體基板上分離藍寶石基板12(步驟116),如第3(k)圖所示。Cheung等人提出的美國專利號6,071,795的專利中,提出了一種從氮化鎵薄膜上分離藍寶石基板的激光剝離方法,特此引用其全文,以作參考。在一個實施例中,用掃描的激光束照射藍寶石基板12,藍寶石並不吸收所用波長。激光照射束穿過藍寶石基板12,照向氮化鎵半導體基板14和藍寶石基板12之間的交界面。優化激光照射能量,使其在交界面處或交界面周圍區域中被吸收,所吸收的照射能量降低了交界面處氮化鎵半導體基板14的分解,從而使藍寶石基板12與元件結構分離。 裸露出氮化鎵半導體基板14的背面後,在氮化鎵半導體基板14的表面形成一個陰極金屬層50(步驟118),如第3(1)圖所示。陰極金屬層50形成到氮化鎵半導體基板14的歐姆接觸,並作為氮化鎵肖特基二極體的陰極電極。更確切地說,陰極金屬層50同重摻雜的N-型氮化鎵層16形成歐姆接觸。用於形成歐姆接觸的陰極金屬層可以從鋁(Al)、矽化鋁(AlSi)、鈦(Ti)、矽化鈦(TiSi)、鉬(Mo)和矽化鉬(MoSi)中選取。 因此所形成的垂直氮化鎵肖特基二極體10,穿過形成在元件結構正面的焊錫球35,接入陽極電極,穿過元件結構的背面,接入陰極電極。從而在氮化鎵肖特基二極體10中,形成從陽極到陰極的垂直電流通路。如上所述,實際上,垂直氮化鎵肖特基二極體的一個陣列(例如元件1和元件2)形成在一個共同基板上。激光剝離共同基板之後,垂直氮化鎵肖特基二極體陣列仍然形成在公共氮化鎵半導體基板14和晶圓級成型層36上。垂直氮化鎵肖特基二極體的陣列可以一起使用,或者在單獨的氮化鎵肖特基二極體中分開。 在本發明的可選實施例中,垂直氮化鎵肖特基二極體60的陽極金屬層62形成在晶圓級成型層36和平整的焊錫球35上方,形成可結合的頂面。當垂直氮化鎵肖特基被分成單獨的二極體元件時,陽極金屬層62作為金屬結合墊,使陽極連接到封裝中的結合引線上。 二極體保護電路依據本發明的另一方面,上述垂直氮化鎵肖特基二極體與垂直的以矽為基板的PN接面二極體並聯,作為一個保護電路。即使具有設計良好的端接結構,氮化鎵肖特基二極體在雪崩擊穿方面的承受性也非常有限。擊穿電壓較低的以矽為基板的PN接面二極體與氮化鎵肖特基二極體並聯,作為保護電路。當氮化鎵肖特基二極體正向偏置時,以矽為基板的PN接面二極體並不傳導。但是以矽為基板的PN接面二極體在電壓較低時擊穿,從而使反向偏置雪崩電流轉向。 第4圖表示依據本發明的一個實施例,一種以矽為基板的PN接面二極體之剖面圖。以矽為基板的PN接面二極體700形成在N+基板704上的N-閉鎖層702的頂面上。P-型區708形成在N斷流層的頂面上。電介質場板710形成在由P-型區708構成的陽極區的邊緣附近。在本實施例中,多晶矽PN接面二極體712形成在場板710上。然後,利用絕緣電介質層714使PN接面二極體的邊緣鈍化。形成電介質層714的圖案,使陽極金屬層716歐姆接觸到P-型區708和多晶矽二極體712的P+區。還提供到多晶矽二極體712的N+區的金屬接觸718。最後,在N+基板704的背面形成一個陰極金屬層706,以製備摻雜PN接面二極體的陰極電極。 因此,單獨的垂直矽PN接面二極體(D1)可以與垂直氮化鎵肖特基二極體(SD1)匹配,作為肖特基二極體的保護電路,如第5圖所示。摻雜氮化鎵肖特基二極體(SD1)以及垂直矽PN接面二極體(D1)可以形成在公共金屬墊850上,作為陰極端。肖特基二極體SD1和PN接面二極體D1的陽極電極可以藉由引線接合,連接到公共金屬墊852上。在這種情況下,如第5(a)圖所示,形成並聯的肖特基二極體以及PN接面二極體。當肖特基二極體反向偏置時,PN接面二極體為氮化鎵肖特基二極體提供保護。 肖特基二極體端接結構依據本發明的另一方面,以氮為基板的肖特基二極體的端接結構包括一個P-型氮化物化合物半導體外延層(「P-型外延層」)作為一個保護環,以及一個形成在外延層上的電介質場板。P-型外延層和電介質場板形成在氮化鎵肖特基二極體陽極電極的邊緣上,用於擴散該區域的電場,從而降低陽極電極邊緣的電場濃度。更重要的是,充分活化藉由外延製程形成的P-型外延層,更加有效地保護環在擴散電場方面。 在一個實施例中,P-型外延層包括後退一步,以便進一步提高端接結構的場擴散效應。當氮化鎵肖特基二極體上使用端接結構時,端接結構確保陽極電極邊緣處最優的電場結構,從而提高肖特基二極體的可靠性。此外,由於UIS(非箝位電感式開關)性能,端接結構使氮化鎵肖特基二極體更加堅固耐用。 第6圖表示依據本發明的一個實施例,引入端接結構的氮化鎵肖特基二極體之剖面圖。參閱第6圖,氮化鎵肖特基二極體200為形成在氮化鎵半導體基板上的垂直傳導的氮化鎵肖特基二極體,包括一個輕摻雜的N-型氮化鎵層(n-氮化鎵)204以及一個重摻雜的N-型氮化鎵層(n++氮化鎵)202。氮化鎵肖特基二極體200包括一個形成在輕摻雜N-型氮化鎵層204上方的肖特基金屬層206,以構成陽極電極。肖特基接面形成在肖特基金屬層206和n-氮化鎵層204之間的交界面處。陰極金屬層220形成在重摻雜的N-型氮化鎵層202表面上,以構成陰極電極。 在本發明的實施例中,參閱第2圖和第3(a)至3(m)圖,利用上述製備垂直氮化鎵肖特基二極體的製程,製備垂直氮化鎵肖特基二極體200。因此,垂直氮化鎵肖特基二極體200最初形成在絕緣基板上,例如藍寶石,使用正面晶圓級成型層之後,剝去絕緣基板。然後,在n++ 氮化鎵層202的背面形成陰極金屬層,以構成歐姆接觸。 在本說明中,本發明所述的端接結構形成在垂直氮化鎵肖特基二極體上。所用的垂直氮化鎵肖特基二極體僅用於解釋說明。本發明所述的端接結構可以使用任意結構的氮化鎵肖特基二極體,包括橫向、準橫向、或垂直傳導的二極體。氮化鎵肖特基二極體的準確結構對於本發明的實施並非關鍵。 在本發明的實施例中,氮化鎵肖特基二極體200的端接結構210包括一個外延生長的P-型氮化物化合物半導體層(「P-型外延層」)212,電介質場板214形成在上面。P-型外延層212形成在氮化鎵半導體基板的頂面上(即n-氮化鎵層204的頂面上)以及陽極電極的邊緣處,包圍著肖特基金屬層206。 在本發明的實施例中,P-型外延層212為P-型氮化鎵層。在一個實施例中,P-型氮化鎵外延層為利用金屬有機化學氣相沉積(Metal-organic Chemical Vapor Deposition, MOCVD)製程製備的一個外延生長層。在其他實施例中,可以使用其他外延製程,製備P-型外延層212,包括分子束外延(Molecular Beam Epitaxy, MBE)以及氫化物氣相外延(Hydride Vapour Phase Epitaxy, HVPE)。 在本發明的實施例中,端接結構210包括形成在P-型外延層212上的電介質場板214,以增強端接結構的電場擴散性能。在一個實施例中,電介質場板214為氮化矽層,藉由數量「fp1」從P-型外延層212的底部拉回。此外,在本發明的實施例中,電介質場板214後退一步,進一步提高電場擴散效應。在本實施例中,電介質場板214包括步階凹陷,長度為「fp2」。在其他實施例中,可以藉由一個或多個步階凹陷,實現氮化鎵肖特基二極體元件最優的電場結構。在製備製程中,在沉積肖特基金屬層206之前,製備端接結構210。當所沉積的肖特基金屬層形成圖案,構成陽極電極時,肖特基金屬層206與電介質場板214重疊「fp3」。 在本發明的實施例中,P-型外延層212的摻雜濃度為1×1017cm-3。在本發明的實施例中,P-型外延層212的厚度為t1,在一個實施例中,t1約為0.5至2 μm。電介質場板214的厚度為t2,在一個實施例中,t2約為0.5-2 μm。 在本發明的一個可選實施例中,氮化鎵肖特基二極體的端接結構具有傾斜結構,以改善電場結構。第7圖表示依據本發明的一個可選實施例,引入端接結構的氮化鎵肖特基二極體之剖面圖。參閱第7圖,氮化鎵肖特基二極體300的端接結構310的製備方式,與第6圖所示的端接結構210類似,端接結構310包括P-型外延層312和電介質場板314。氮化鎵半導體基板包括一個重摻雜的氮化鎵層(n++ 氮化鎵層)302以及一個輕摻雜的氮化鎵層(n- 氮化鎵層)304。陰極金屬層320形成在重摻雜的N-型氮化鎵層302的背面,構成陰極電極。然而,在本實施例中,P-型外延層312和電介質場板314絕緣傾斜結構,也就是一個光滑斜坡從P-型外延層312的底部開始延伸到電介質場板314的頂部。該斜坡形成在端接結構的內表面上,面對肖特基金屬層306。端接結構310的斜坡結構有利於實現平滑電場結構,從而具有最優的擊穿性能。 在本發明的另一個可選實施例中,氮化鎵肖特基二極體的端接結構具有步階凹陷P-型外延層和電介質場板。第8圖表示依據本發明的第二可選實施例,引入端接結構的氮化鎵肖特基二極體之剖面圖。參閱第8圖,氮化鎵肖特基二極體400的端接結構410的製備方式,與第6圖所示的端接結構210類似,端接結構410包括一個P-型外延層412和一個電介質側壁414。氮化鎵半導體基板包括一個重摻雜的氮化鎵層(n++ 氮化鎵層)402和一個輕摻雜的氮化鎵層(n- 氮化鎵層)404。陰極金屬層420形成在重摻雜N-型氮化鎵層402的背面,構成陰極電極。然而,在本實施例中,P-型外延層412和電介質場板414具有步階凹陷結構。更確切地說,P-型外延層412具有一個長度為「fp1」的步階凹陷,電介質場板414具有一個長度為「fp2」的步階凹陷。P-型外延層412和電介質場板414的步階凹陷結構適用於陽極電極邊緣處的電場,從而降低了陽極電極邊緣處的電場擁擠。在本發明的實施例中,P-型外延層412的步階凹陷430的長度約為1-10 μm。 製備端接結構410的製程包括在P-型外延層412中的步階凹陷,參閱第9(a)至9(f)圖,將在以下文字中介紹電介質場板414。第9(a)至9(f)圖表示依據本發明的實施例,在製備第8圖所示的端接結構的中間步驟時,氮化鎵肖特基二極體之剖面圖。參閱第9(a)至9(f)圖,氮化鎵肖特基二極體490包括一個形成在絕緣藍寶石基板403上的氮化鎵半導體基板。氮化鎵半導體基板包括一個重摻雜的氮化鎵層(n++ 氮化鎵層)402以及一個輕摻雜的氮化鎵層(n- 氮化鎵層)404。為了製備端接結構,要在輕摻雜的氮化鎵層404上外延生長一個P-型氮化鎵層412。然後,在P-型氮化鎵外延層412上方,沉積一個氮化矽層440。在氮化矽層440上形成一個光致抗蝕劑圖案442,限定製備端接結構的區域(第9(a)圖)。 然後,利用光致抗蝕劑圖案442作為遮罩,進行刻蝕製程。刻蝕製程將氮化矽層440和P-型外延層412都向下刻蝕到P-型外延層中的步階凹陷深度,如圖中點劃線445所示(第9(b)圖)。然後,利用另一個光致抗蝕劑圖案,覆蓋端接結構,並將P-型外延層412向下刻蝕到n- 氮化鎵層404(第9(b)圖)。在氮化矽層440、P-型外延層412以及n-氮化鎵層404的裸露表面上沉積肖特基金屬層406(第9(c)圖)。 然後,在元件結構上方,沉積第二個氮化矽層446,並形成圖案,在場板結構中形成一個步階凹陷,如第9(d)圖所示。從而構成了電介質場板結構414。在本實施例中,肖特基金屬層406形成在場板結構的兩個氮化矽層440、446之間。在其他實施例中,可以在第二個氮化矽層446上方,製備肖特基金屬層406,如第8圖所示。 完成端接結構410之後,沉積一個結合金屬層448,與肖特基金屬層406形成電接觸。形成結合金屬層448的圖案,構成氮化鎵肖特基二極體490的陽極電極,如第9(e)圖所示。最後,藉由鈍化層(例如聚醯亞胺層452),使氮化鎵肖特基二極體的邊緣鈍化,如第9(f)圖所示。從而形成包括端接結構410的氮化鎵肖特基二極體490。 在第9(f)圖中,在絕緣藍寶石基板403上製備氮化鎵肖特基二極體490,因此氮化鎵肖特基二極體490為橫向或準橫向二極體元件。肖特基二極體的陰極電極可以提到元件的正面,遠離陽極電極和端接接面構的位置上。在本發明的實施例中,當需要垂直氮化鎵肖特基二極體時,氮化鎵肖特基二極體可以製成一個垂直氮化鎵肖特基二極體,如第8圖所示,參閱上述第2圖。首先封裝氮化鎵肖特基二極體490的正面,隨後激光剝離絕緣藍寶石基板403,製備垂直氮化鎵肖特基二極體。然後,在n++ 氮化鎵層402的背面,沉積一個陰極金屬層,構成背面陰極電極。從而形成了一個垂直氮化鎵肖特基二極體。 在本發明的另一個可選實施例中,氮化鎵肖特基二極體的端接結構包括多個保護環或場板結構,以便進一步提高擊穿性能。第10圖表示依據本發明的第三個可選實施例,引入端接接面構的氮化鎵肖特基二極體的剖面圖。參閱第10圖,氮化鎵肖特基二極體500包括一個含有多個保護環或場板結構550、560、570的端接結構510。每個保護環或場板結構都可以利用上述結構製備,參閱第6、7和8圖。在本實施例中,利用第8圖所示的步階凹陷結構,製備保護環或場板結構,在該處,P-型外延層和場板都含有步階凹陷,適用於電場結構。在實際元件中,多個保護環或場板結構550、560、570構成同心外殼,包圍著肖特基金屬層構成的陽極電極。多個保護環或場板結構550、560、570藉由進一步擴散電場,提高了氮化鎵肖特基二極體500的擊穿性能。 在本發明的另一個可選實施例中,氮化鎵肖特基二極體包括一個端接結構,在陽極電極的邊緣處,以及一個接面勢壘二極體結構,在肖特基接面處,用於適應肖特基接面處的電場。第11圖表示依據本發明的第四可選實施例,引入端接結構的氮化鎵肖特基二極體之剖面圖。參閱第11圖,氮化鎵肖特基二極體600包括一個含有多個保護環或場板結構650、660、670的端接結構610。氮化鎵肖特基二極體600還包括一個接面勢壘二極體680陣列,利用P-型外延層的島,形成在肖特基二極體接面處。P-型外延層的島與n-氮化鎵層604相接觸,構成一個接面勢壘二極體陣列。接面勢壘二極體的作用是沿n-氮化鎵層的頂面,形成耗盡區,以降低電荷濃度。從而提高氮化鎵肖特基二極體600的擊穿性能。在其他實施例中,可以使用帶有一個或多個保護環或場板結構的接面勢壘二極體680。使用帶有多個保護環或場板結構的接面勢壘二極體680僅用於解釋說明。 上述詳細說明用於解釋說明本發明的典型實施例,並不作為侷限。本發明範圍內可能存在各種修正和變化。本發明的範圍應由所附的申請專利範圍限定。 1...元件 2...元件 10...垂直氮化鎵肖特基二極體 102...絕緣基板 102~118...步驟 12...藍寶石基板 14...氮化鎵基板 16...氮化鎵層 18...氮化鎵層 20...p-型保護環 200...氮化鎵肖特基二極體 202...n++氮化鎵層 204...n-氮化鎵層 206...肖特基金屬層 210...端接結構 212...P-型外延層 214...電介質場板 22...氧化矽層 220...陰極金屬層 24...肖特基金屬層 26...氧化矽層 30...結合金屬層 300...氮化鎵肖特基二極體 302...N-型氮化鎵層 304...氮化鎵層 306...肖特基金屬層 310...端接結構 312...P-型外延層 314...電介質場板 32...鈍化層 320...陰極金屬層 35...焊錫球 36...晶圓級型層 40...光致抗蝕劑圖案 400...氮化鎵肖特基二極體 402...氮化鎵層 403...絕緣藍寶石基板 404...氮化鎵層 406...肖特基金屬層 410...端接結構 412...P-型外延層 414...電介質側壁 420...陰極金屬層 430...步階凹陷 440...氮化矽層 442...光致抗蝕劑圖案 445...點劃線 446...氮化矽層 448...結合金屬層 452...聚醯亞胺層 490...氮化鎵肖特基二極體 50...陰極金屬層 500...氮化鎵肖特基二極體 510...端接結構 550、560、570...場板結構 60...垂直氮化鎵肖特基二極體 600...氮化鎵肖特基二極體 604...n-氮化鎵層 610...端接結構 62...陽極金屬層 650、660、670...場板結構 680...接面勢壘二極體 700...PN接面二極體 702...N-閉鎖層 704...N+基板 706...陰極金屬層 708...P-型區 710...電介質場板 712...多晶矽二極體 714...電介質層 716...陽極金屬層 718...金屬接觸 850、852...公共金屬墊 fp1...數量 fp2...長度 fp3...重疊 D1...PN接面二極體 SD1...肖特基二極體 t1、t2...厚度 第1圖表示依據本發明的一個實施例,一種垂直氮化鎵肖特基二極體之剖面圖。第2圖表示依據本發明的一個實施例,用於摻雜氮化鎵肖特基二極體的製備製程之流程圖。第3(a)至3(m)圖表示依據本發明的實施例,在第2圖所示製備製程的中間過程中,垂直氮化鎵肖特基二極體之剖面圖。第4圖表示依據本發明的一個實施例,一種以矽基板的PN接面二極體之剖面圖。第5圖表示依據本發明的一個實施例,一種用於製備氮化鎵肖特基二極體和以矽基板的PN接面二極體的並聯組合結構之俯視圖。第5(a)圖表示第5圖所示結構之等效電路圖。第6圖表示依據本發明的一個實施例,引入端接結構的氮化鎵肖特基二極體之剖面圖。第7圖表示依據本發明的一個可選實施例,引入端接結構的氮化鎵肖特基二極體之剖面圖。第8圖表示依據本發明的一個第二可選實施例,引入端接結構的氮化鎵肖特基二極體之剖面圖。第9(a)至9(f)圖表示依據本發明的實施例,在第8圖所示的端接結構的製備製程中間過程中,垂直氮化鎵肖特基二極體之剖面圖。第10圖表示依據本發明的一個第三可選實施例,引入端接結構的氮化鎵肖特基二極體之剖面圖。第11圖表示依據本發明的一個第四可選實施例,引入端接結構的氮化鎵肖特基二極體之剖面圖。 1...元件 2...元件 10...垂直氮化鎵肖特基二極體 14...氮化鎵基板 24...肖特基金屬層 30...結合金屬層 32...鈍化層 35...焊錫球 36...晶圓級型層 50...陰極金屬層
权利要求:
Claims (20) [1] 一種垂直傳導之氮化物肖特基二極體,其包括:第一導電類型之氮化物半導體基板;第一金屬層,其形成在氮化物半導體基板正面,構成一肖特基接面,且該第一金屬層構成肖特基二極體之陽極電極;第二金屬層,其形成在第一金屬層上;第三金屬層,其形成在氮化物半導體基板背面,第三金屬層與氮化物半導體基板構成歐姆接觸,第三金屬層構成肖特基二極體之陰極電極;焊錫球,其形成在第二金屬層上;以及晶圓級成型層,其形成在氮化物半導體基板正面,晶圓級成型層封裝第二金屬層以及焊錫球的至少一部分,該肖特基二極體具有一從焊錫球穿過陽極電極和肖特基接面,一直到陰極電極之垂直電流通路。 [2] 如申請專利範圍第1項所述之垂直傳導之氮化物肖特基二極體,其中該焊錫球平整到晶圓級成型層的頂面。 [3] 如申請專利範圍第1項所述之垂直傳導之氮化物肖特基二極體,其中該第一導電類型之氮化物半導體基板包括:第一導電類型之重摻雜氮化鎵層;以及第一導電類型之輕摻雜氮化鎵層,其形成在重摻雜氮化鎵層上,其中,該第一金屬層形成在輕摻雜氮化鎵層的頂面上,該第三金屬層形成在重摻雜氮化鎵層的背面上。 [4] 如申請專利範圍第1項所述之垂直傳導之氮化物肖特基二極體,其更包括形成在第一金屬層邊緣處之端接結構,配置該端接結構可以降低陽極電極邊緣處之電場擁擠。 [5] 如申請專利範圍第4項所述之垂直傳導之氮化物肖特基二極體,其中該端接結構包括:一含有第二導電類型之氮化物外延層,第二導電類型與第一導電類型相反,形成在第一金屬層邊緣處之氮化物半導體基板的正面,該氮化物外延層具有一步階凹陷,較薄的外延層部分朝向肖特基二極體的肖特基接面設置;以及一電介質場板,形成在氮化物外延層頂面上,電介質場板延伸到氮化物外延層之步階凹陷。 [6] 如申請專利範圍第5項所述之垂直傳導之氮化物肖特基二極體,其中該氮化物外延層包括一第二導電類型之氮化鎵層,該電介質場板包括一氮化矽層。 [7] 如申請專利範圍第5項所述之垂直傳導之氮化物肖特基二極體,其中該第一導電類型包括N-型導電類型,該第二導電類型包括P-型導電類型。 [8] 如申請專利範圍第4項所述之垂直傳導之氮化物肖特基二極體,其中該端接結構包括:一由第二導電類型之植入區構成之保護環,該第二導電類型與第一導電類型相反,保護環形成在第一金屬層的邊緣處之氮化物半導體基板之頂面上;以及一電介質場板,至少一部分形成在植入區上,該電介質場板從肖特基接面附近之植入區末端被拉回。 [9] 如申請專利範圍第1項所述之垂直傳導之氮化物肖特基二極體,其更包括一形成在第二金屬層上之鈍化層,以便至少覆蓋第二金屬層的邊緣。 [10] 如申請專利範圍第1項所述之垂直傳導的氮化物肖特基二極體,其中該晶圓級成型層形成整合電路之成型化合物。 [11] 一種用於製備垂直傳導氮化物肖特基二極體之方法,其包括:製備絕緣基板;在絕緣基板上,製備第一導電類型之氮化物半導體基板;在氮化物半導體基板的正面,製備第一金屬層,以構成肖特基接面,第一金屬層構成肖特基二極體之陽極電極;在第一金屬層上製備一第二金屬層;在第二金屬層上製備一焊錫球;在氮化物半導體基板上製備一晶圓級成型層,晶圓級成型層封裝第二金屬層以及焊錫球的至少一部分;將絕緣基板與半導體基板分開,使氮化物半導體基板背面裸露出來;以及在氮化物半導體基板裸露的背面上,製備一第三金屬層,第三金屬層與半導體基板形成歐姆接觸,第三金屬層構成肖特基二極體的陰極電極;其中,肖特基二極體具有一從焊錫球穿過陽極電極和肖特基接面,一直到陰極電極之垂直電流通路。 [12] 如申請專利範圍第11項所述之方法,其更包括:將焊錫球平整到晶圓級成型層的頂面。 [13] 如申請專利範圍第11項所述之方法,其中在絕緣基板上製備一第一導電類型之氮化物半導體基板,包括:在絕緣基板上,製備一第一導電類型之重摻雜氮化鎵層;以及在重摻雜氮化鎵層上,製備一第一導電類型之輕摻雜氮化鎵層;其中,第一金屬層形成在輕摻雜氮化鎵層的頂面上,除去絕緣基板後,在重摻雜氮化鎵層的背面上,製備第三金屬層。 [14] 如申請專利範圍第11項所述之方法,其中將絕緣基板與半導體基板分開包括:利用激光剝離技術,將絕緣基板與半導體基板分開。 [15] 如申請專利範圍第11項所述之方法,其更包括:在第一金屬層邊緣處,製備一端接結構,配置該端接結構可以降低陽極電極邊緣處的電場擁擠。 [16] 如申請專利範圍第15項所述之方法,其中製備該端接接面構包括:製備一由第二導電類型之氮化物外延層構成之保護環,第二導電類型與第一導電類型相反,在第一金屬層邊緣處之氮化物半導體基板的正面,氮化物外延層具有一步階凹陷,較薄的外延層部分朝向肖特基二極體的肖特基接面設置;以及在氮化物外延層頂面上,製備一電介質場板,電介質場板延伸到氮化物外延層之步階凹陷。 [17] 如申請專利範圍第16項所述之方法,其中氮化物外延層包括一第二導電類型之氮化鎵層,電介質場板包括一氮化矽層。 [18] 如申請專利範圍第16項所述之方法,其中第一導電類型包括N-型導電類型,第二導電類型包括P-型導電類型。 [19] 如申請專利範圍第11項所述之方法,其更包括:在第二金屬層上,製備一鈍化層,以便至少覆蓋第二金屬層的邊緣。 [20] 一種電路封裝,其包括:一垂直傳導之氮化鎵肖特基二極體,肖特基二極體具有一陽極電極,形成在氮化物半導體基板的正面,以及一陰極電極,形成在氮化物半導體基板的背面;以及一垂直傳導的矽PN接面二極體,PN接面二極體具有一陽極電極,電連接到肖特基二極體之陽極電極,以及一陰極電極,電連接到肖特基二極體之陰極電極,肖特基二極體和PN接面二極體封裝在同一半導體封裝中,當肖特基二極體正向偏置時,PN接面二極體並不傳導。
类似技术:
公开号 | 公开日 | 专利标题 TWI514592B|2015-12-21|用於氮化鎵肖特基二極體之端接結構 TWI514591B|2015-12-21|垂直氮化鎵肖特基二極體 JP5240966B2|2013-07-17|窒化ガリウム半導体素子 TWI467775B|2015-01-01|改良正向傳導的氮化鎵半導體裝置 JP5150803B2|2013-02-27|複数のメサを有するラテラル導電型ショットキーダイオード TWI473265B|2015-02-11|帶有改良型終止結構的氮化鎵半導體裝置 US8937317B2|2015-01-20|Method and system for co-packaging gallium nitride electronics JP5616960B2|2014-10-29|電気的分離を用いた、コンタクトパッドのダイエッジまでの延在 US10170563B2|2019-01-01|Gallium nitride semiconductor device with improved termination scheme
同族专利:
公开号 | 公开日 US20150228729A1|2015-08-13| US8772144B2|2014-07-08| US10038106B2|2018-07-31| CN103107204A|2013-05-15| CN103107204B|2015-07-08| US20180323315A1|2018-11-08| US20170301800A1|2017-10-19| US9728655B2|2017-08-08| US20160372610A1|2016-12-22| US9406661B2|2016-08-02| US8994140B2|2015-03-31| US20190296157A1|2019-09-26| TWI514591B|2015-12-21| US10333006B2|2019-06-25| US20140252372A1|2014-09-11| US10573762B2|2020-02-25| US20130119393A1|2013-05-16|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 US4010482A|1975-12-31|1977-03-01|International Business Machines Corporation|Non-volatile schottky barrier diode memory cell| US4098921A|1976-04-28|1978-07-04|Cutler-Hammer|Tantalum-gallium arsenide schottky barrier semiconductor device| US4201998A|1977-02-18|1980-05-06|Bell Telephone Laboratories, Incorporated|Devices with Schottky metal contacts filling a depression in a semi-conductor body| US6071795A|1998-01-23|2000-06-06|The Regents Of The University Of California|Separation of thin films from transparent substrates by selective optical processing| FR2816113A1|2000-10-31|2002-05-03|St Microelectronics Sa|Procede de realisation d'une zone dopee dans du carbure de silicium et application a une diode schottky| US6844251B2|2001-03-23|2005-01-18|Krishna Shenai|Method of forming a semiconductor device with a junction termination layer| US7229866B2|2004-03-15|2007-06-12|Velox Semiconductor Corporation|Non-activated guard ring for semiconductor devices| JP4400441B2|2004-12-14|2010-01-20|三菱電機株式会社|半導体装置| JP2007048783A|2005-08-05|2007-02-22|Matsushita Electric Ind Co Ltd|ショットキーダイオード及びその製造方法| US20070093037A1|2005-10-26|2007-04-26|Velox Semicondutor Corporation|Vertical structure semiconductor devices and method of fabricating the same| CN100424892C|2006-08-01|2008-10-08|武汉大学|一种基于硅纳米线的异质pn结二极管及其制备方法| CN101542736A|2007-03-26|2009-09-23|住友电气工业株式会社|肖特基势垒二极管及其产生方法| JP4980126B2|2007-04-20|2012-07-18|株式会社日立製作所|フリーホイールダイオードとを有する回路装置| US20090075455A1|2007-09-14|2009-03-19|Umesh Mishra|Growing N-polar III-nitride Structures| US7851881B1|2008-03-21|2010-12-14|Microsemi Corporation|Schottky barrier diode and its off-shoot merged PN/Schottky diode or junction barrier Schottky diode| US8076699B2|2008-04-02|2011-12-13|The Hong Kong Univ. Of Science And Technology|Integrated HEMT and lateral field-effect rectifier combinations, methods, and systems| JP5381420B2|2008-07-22|2014-01-08|富士電機株式会社|半導体装置| JP5056658B2|2008-08-04|2012-10-24|住友電気工業株式会社|ガードリング構造,その形成方法および半導体デバイス| CN103441140A|2008-08-05|2013-12-11|住友电气工业株式会社|肖特基势垒二极管| US8013414B2|2009-02-18|2011-09-06|Alpha & Omega Semiconductor, Inc.|Gallium nitride semiconductor device with improved forward conduction| US7842974B2|2009-02-18|2010-11-30|Alpha & Omega Semiconductor, Inc.|Gallium nitride heterojunction schottky diode| US8372738B2|2009-10-30|2013-02-12|Alpha & Omega Semiconductor, Inc.|Method for manufacturing a gallium nitride based semiconductor device with improved termination scheme| JP5156059B2|2009-12-16|2013-03-06|株式会社豊田中央研究所|ダイオードとその製造方法| CN201773902U|2010-05-11|2011-03-23|烟台艾森信息技术股份有限公司|锂充电电池| US20120007097A1|2010-07-08|2012-01-12|Intersil Americas Inc.|Schottky diode with combined field plate and guard ring| US8933532B2|2011-10-11|2015-01-13|Avogy, Inc.|Schottky diode with buried layer in GaN materials| US8772144B2|2011-11-11|2014-07-08|Alpha And Omega Semiconductor Incorporated|Vertical gallium nitride Schottky diode|US8772144B2|2011-11-11|2014-07-08|Alpha And Omega Semiconductor Incorporated|Vertical gallium nitride Schottky diode| CN104347732A|2013-07-23|2015-02-11|立锜科技股份有限公司|接面能障肖特基二极管及其制造方法| KR102145911B1|2014-01-08|2020-08-19|엘지이노텍 주식회사|반도체 소자| CN106463394B|2014-04-28|2019-06-18|三菱电机株式会社|半导体装置| JP6300659B2|2014-06-19|2018-03-28|株式会社東芝|半導体装置| US9571093B2|2014-09-16|2017-02-14|Navitas Semiconductor, Inc.|Half bridge driver circuits| US9401612B2|2014-09-16|2016-07-26|Navitas Semiconductor Inc.|Pulsed level shift and inverter circuits for GaN devices| US9595616B1|2015-12-02|2017-03-14|Sandia Corporation|Vertical III-nitride thin-film power diode| US9831867B1|2016-02-22|2017-11-28|Navitas Semiconductor, Inc.|Half bridge driver circuits| CN106898639B|2017-01-18|2019-12-31|浙江大学|一种非耗尽型结终端扩展与浮空场板场强互补的终端结构| CN107706244A|2017-09-18|2018-02-16|宁波海特创电控有限公司|一种垂直型氮化镓肖特基二极管的制作工艺| US10529819B2|2017-11-04|2020-01-07|Globalfoundries Singapore Pte. Ltd.|High voltage Schottky diode and manufacturing method thereof| CN108417486B|2018-03-13|2020-05-26|中国工程物理研究院电子工程研究所|一种GaN基SBD变频电路及其制作方法| US10615292B2|2018-03-27|2020-04-07|Hong Kong Applied Science And Technology Research Institute Co., Ltd.|High voltage silicon carbide Schottky diode flip chip array| CN108767019A|2018-05-22|2018-11-06|西安电子科技大学|一种部分P型AlGaN帽层RESURF GaN基肖特基势垒二极管| CN108649075A|2018-05-22|2018-10-12|西安电子科技大学|基于场板和P型AlGaN帽层的RESURF GaN基肖特基势垒二极管| CN109411526A|2018-08-28|2019-03-01|西安电子科技大学|一种具有复合阳极的GaN基肖特基势垒二极管| US10916626B2|2018-12-28|2021-02-09|Hong Kong Applied Science And Technology Research Institute Co., Ltd.|High voltage power device with hybrid Schottky trenches and method of fabricating the same| CN111192928B|2020-01-09|2021-08-13|西安交通大学|一种高击穿电压低反向漏电的垂直GaN肖特基器件结构| EP3951841A1|2020-08-07|2022-02-09|Hitachi Energy Switzerland AG|Power semiconductor devices with edge termination and method of manufacturing the same|
法律状态:
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 US13/294,903|US8772144B2|2011-11-11|2011-11-11|Vertical gallium nitride Schottky diode| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|